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Abstract
A Borel–Tits theory was developed for almost split forms of symmetrizable
Kac–Moody Lie algebras. In this paper, we look to almost split real forms and
their restricted root systems for symmetrizable hyperbolic Kac–Moody Lie
algebras. We establish a complete list of these forms, in terms of their Satake–
Tits index, for the strictly hyperbolic ones and for those which are obtained
as (hyperbolic) canonical Lorentzian extensions of affine Lie algebras. These
forms are of particular interest in theoretical physics because of their connection
to supergravity theories.

PACS numbers: 02.20.Sv, 04.65.+e
Mathematics Subject Classification: 17B67, 83E50

1. Introduction

Since their appearance in the late 1960s, as generalizations of semi-simple complex Lie
algebras, the (infinite-dimensional) Kac–Moody Lie algebras have played an increasingly
crucial role in various areas of mathematics as well as theoretical physics. The hyperbolic
Kac–Moody Lie algebras (which constitute a subclass of Lorentzian Kac–Moody algebras
[24]) and some of their (almost split) real forms have appeared, besides the affine Kac–Moody
algebras, in a variety of problems in the realms of string theory ([14, 13], . . .) and supergravity
theories ([36, 16], . . .).

Almost split forms of symmetrizable Kac–Moody Lie algebras were studied in
[30–32] and [2] for an arbitrary field of characteristic 0: a Borel–Tits Theory was developed
for these forms and a classification, in the real case, in terms of the Satake–Tits index,
was done for affine Lie algebras [2]. The relative (or restricted) root systems were also
considered in [2]. In [29], G Rousseau gave a realization, in terms of the loop algebras, for
all the almost split real forms of affine Lie algebras. The same construction was done by
V Back for an arbitrary field of characteristic 0 instead of the real field ([2], section 5). Some

0305-4470/06/4413659+32$30.00 © 2006 IOP Publishing Ltd Printed in the UK 13659

http://dx.doi.org/10.1088/0305-4470/39/44/004
mailto:hechmi.benmessaoud@fsm.rnu.tn
http://stacks.iop.org/JPhysA/39/13659


13660 H Ben Messaoud

forms (which may be almost anisotropic or almost compact in the real case) of symmetrizable
Kac–Moody algebras are defined by generators and relations [1, 10]. Almost compact real
forms of affine Kac–Moody algebras were studied in [4] and [28] and entirely classified in [7].
The conjugate classes of their Cartan subalgebras were classified in [8].

This paper is devoted to the classification (in terms of the Satake–Tits index) of almost
split real forms, and their relative root systems, for some symmetrizable hyperbolic Kac–
Moody Lie algebras (namely, the strictly hyperbolic Kac–Moody algebras and Kac–Moody
Lie algebras which are obtained as (canonical) Lorentzian extensions of affine Lie algebras)
which we consider the most met in supergravity theories [16].

The paper is organized as follows. In section 2, we recall the construction of
(symmetrizable) Kac–Moody Lie algebras and groups from the so-called generalized Cartan
matrices and we set the notation. We also give a description of the automorphisms group and
the invariant bilinear form for any indecomposable and symmetrizable Kac–Moody algebra
when the defining generalized Cartan matrix is non-singular (since in this case description is
less complicated, and it is in particular valid for the hyperbolic case).

Sections 3 and 4 are mostly an exposition of known results on almost split forms [2, 3] that
we have written here, in the real case, for hyperbolic Kac–Moody algebras. The main results
are theorems 3.2.7, 3.3.1 and 3.6.3 which are also valid for any symmetrizable Kac–Moody
algebra with non-singular generalized Cartan matrix. In particular, we prove in section 3
(theorem 4.1.1) that the Iwasawa decomposition holds for these forms and the corresponding
real Kac–Moody groups.

In section 5, we introduce, in a more general way, the notion of Lorentzian extensions
of affine Lie algebras and we enumerate those which are hyperbolic. Finally, we apply the
results of sections 3 and 4 to give a complete list of almost split real forms, together with their
restricted root systems, for the subclass of strictly hyperbolic Kac–Moody Lie algebras and
hyperbolic Kac–Moody Lie algebras which are obtained as (canonical) Lorentzian extensions
of affine Lie algebras. Note that the classification of almost split real forms could be done
for any symmetrizable hyperbolic Kac–Moody Lie algebra, but as the list of these algebras is
long (at least 136) we have restricted ourselves to the selected subclass of hyperbolic algebras
cited above.

2. Preliminaries

We recall the most important known facts about Kac–Moody algebras and groups, we add
some facts in the hyperbolic case and set the notation.

2.1. Generalized Cartan matrices

An n × n matrix A = (ai,j ) is called a generalized Cartan matrix if it satisfies

(1) ai,i = 2 (i = 1, 2, . . . , n),
(2) ai,j ∈ {0,−1,−2, . . .} (i �= j),
(3) ai,j = 0 implies aj,i = 0.

The matrix A is called decomposable if for a suitable permutation π of {1, 2, . . . , n} it takes

the form (aπ(i),π(j)) = (
B 0
0 C

)
where B and C are square matrices. If A is not decomposable, it

is called indecomposable.
The matrix A is called symmetrizable if there exists an invertible diagonal matrix

D = diag(d1, d2, . . . , dn) such that DA is symmetric. The entries d1, d2, . . . , dn can be
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chosen to be positive rational and if moreover the matrix A is indecomposable, then these
entries are unique up to a constant factor.

It was stated in [17] that the collection of indecomposable generalized Cartan matrices
is divided into three mutually exclusive types: finite, affine and indefinite. A classification of
these matrices in terms of their Dynkin diagrams is done for the finite and the affine type ones
and it can be found (for example) in [17], chapter 4.

An indecomposable generalized Cartan matrix A is called strictly hyperbolic (resp.
hyperbolic) if it is of indefinite type and all of its principal submatrices have all their
indecomposable constituents of finite (resp. finite or affine) type. This means that the Dynkin
diagram corresponding to A becomes a disjoint union of Dynkin diagrams of finite (resp. finite
or affine) type upon deletion of any one vertex and the edges connected to it.

The matrices Hs,t = (
2 −s
−t 2

)
, where s and t are positive integers such that st > 4, cover

all the rank-2 generalized Cartan matrices of indefinite type, they are symmetrizable and
strictly hyperbolic and they have been treated by Lepowsky and Moody in [22]. The Dynkin
diagram corresponding to the strictly hyperbolic matrix Hs,t (we may assume 0 < s � t) is
the following:

H(s,t) : s•
1

t•
2

.

The classification by Saçlioǧlu [33] of hyperbolic Dynkin diagrams shows that there is no
strictly hyperbolic (resp. hyperbolic) generalized Cartan matrix of order larger than 4 (resp.
10). The number of hyperbolic generalized Cartan matrices of order from 3 to 10 is necessarily
finite (cf [33]). Note that a symmetrizable hyperbolic generalized Cartan matrix is non-singular
and the corresponding symmetric matrix has signature (+ + · · · + −) cf [25]. In particular,
hyperbolic generalized Cartan matrices are Lorentzian.

2.2. Kac–Moody algebras and groups

(See [17] and [27].) Let A = (ai,j ) be an n×n indecomposable and symmetrizable generalized
Cartan matrix with a realization (h,� = {α1, α2, . . . , αn},�ˇ = {α1̌, α2̌, . . . , αň}), where h

is a vector space over the complex field C such that dim h = n + corank(A), � and �ˇ are
linearly independent in h∗ and h, respectively, such that 〈αj , αǐ〉 = ai,j . It follows that if A is
non-singular then �ˇ (resp. �) is a basis of h (resp. h∗) and we denote by P = (p1, p2, . . . , pn)

the dual basis of � in h.
Let g = g(A) be the complex Kac–Moody algebra associated with A: it is generated by

{h, ei, fi; i = 1, 2, . . . , n} with the following relations:

[h, h] = 0, [ei, fj ] = δi,jαǐ (i, j = 1, 2, . . . , n);
[h, ei] = 〈αi, h〉ei, [h, fi] = −〈αi, h〉fi (h ∈ h);
(adei)

1−ai,j (ej ) = 0, (adfi)
1−ai,j (fj ) = 0 (i �= j).

(2.2.1)

The Kac–Moody algebra g = g(A) is called of finite, affine or indefinite type if the
corresponding generalized Cartan matrix A is.

The derived algebra g′ of g is generated by the Chevalley generators ei, fi (i =
1, 2, . . . , n); and the centre c of g lies in h′ = h ∩ g′ = ∑n

i=1 Cαǐ . If the generalized
Cartan matrix A is non-singular (that is the case when A is of finite type or hyperbolic) then
g = g′ is a (finite or infinite)-dimensional simple Lie algebra and the centre c is trivial.

The Chevalley Cartan involution ω of g is the involutive automorphism such that
ω(h) = −h (h ∈ h) and ω(ei) = −fi (i = 1, 2, . . . , n).



13662 H Ben Messaoud

The subalgebra h is a maximal ad(g)-diagonalizable subalgebra of g, it is called the
standard Cartan subalgebra of g. Let � = �(g, h) be the corresponding root system; then
� is a root basis of � and � = �+ ∪ �−, where �± = � ∩ Z±� is the set of positive (or
negative) roots relative to the basis �.

The Weyl group W of (g, h) is generated by the fundamental reflections ri (i = 1, 2, . . . , n)

such that ri(h) = h − 〈αi, h〉αǐ for h ∈ h, it is a Coxeter group on {r1, r2, . . . , rn} with length
function w 	→ l(w),w ∈ W . The Weyl group W acts on h∗ and �, we set �re = W(�) (the
real roots) and �im = �\�re (the imaginary roots). Any root basis of � is W -conjugate to �

or −�. The opposite root basis −� is W -conjugate to � if and only if the generalized Cartan
matrix A is of finite type.

For α ∈ �, let gα be the root space of g corresponding to the root α. We have the root
space decomposition g = h ⊕ (⊕α∈�gα).

A Borel subalgebra of g is a maximal completely solvable subalgebra. A parabolic
subalgebra of g is a (proper) subalgebra containing a Borel subalgebra. The standard positive
(or negative) Borel subalgebra is b± := h⊕ (⊕α∈�±gα). A parabolic subalgebra p+ (resp. p−)
containing b+ (resp. b−) is called positive (resp. negative) standard parabolic subalgebra of g;
then there exists a subset J of � (different from �) such that p± = p±(J ) := (⊕α∈�J

gα)+b±,
where �J = � ∩ (ZJ ), and we say that p± is of type J (cf [20]). If J is of finite type (i.e.,
�J is finite), the standard parabolic subalgebra p± is called of finite type.

In [27], Peterson and Kac construct a group G, which is the connected and simply
connected complex algebraic group associated with g when g is of finite type, depending
only on the derived Lie algebra g′ and acting on g via the adjoint representation Ad :
G → Aut(g). It is generated by the one-parameter subgroups Uα = exp(gα), α ∈ �re,
and Ad(Uα) = exp(adgα)).

For each i = 1, 2, . . . , n there exists a monomorphism φi : SL2(C) → G satisfying

φi

((
1 t

0 1

))
= exp(tei), φi

((
1 0
t 1

))
= exp(tfi), t ∈ C.

Set mi = φi

((
0 1

−1 0

)) = exp(ei) exp(−fi) exp(ei) = exp(−fi) exp(ei) exp(−fi); then Ad(mi)

induces the fundamental reflection ri on h and we may always view an element of the Weyl
group W as an automorphism of g.

Let N (resp. H) be the stabilizer (resp. fixator) of h in G, then H is a normal subgroup of
N and N/H is isomorphic to the Weyl group W .

The centre Z(G) (= Ker(Ad)) of G is contained in H, it is isomorphic to
Hom(Zn/AZn, C×) and it is finite when the generalized Cartan matrix A is non-singular.

The Cartan subalgebras of g are G-conjugate. If g is not of finite type, there are exactly
two conjugate classes (under the adjoint action of G) of Borel subalgebras: G · b+ and G · b−.
A Borel subalgebra b of g which is G-conjugate to b+ (resp. b−) is called positive (resp.
negative). It follows that any parabolic subalgebra p of g is G-conjugate to a standard positive
(or negative) parabolic subalgebra and we say that p is positive (or negative).

2.3. Automorphisms of Kac–Moody algebras

We give here a description of the group Aut(g) of automorphisms of g when the
indecomposable and symmetrizable generalized Cartan matrix A is non-singular and of
indefinite type (where it is always the case when A is of hyperbolic type). More details
can be found in [2] or [20] for the general case.

A linear or semi-linear automorphism σ of g over C is called of the first kind (resp. second
kind) if it transforms a Borel subalgebra into a Borel subalgebra of the same (resp. opposite)
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sign. Let Aut1(g) denote the subgroup of automorphisms of g of the first kind. If σ is of the
first kind, then ωσ is of the second kind and one can see easily that Aut1(g) and ωAut1(g)

form a partition of Aut(g).
The adjoint group Ad(G) is a normal subgroup of Aut1(g) and Aut(g). As the

generalized Cartan matrix A is assumed to be non-singular, the adjoint group is exactly
the inner automorphisms group (denoted as Int(g) in [2]) since in this case the group
H̃ = Hom

(⊕n
i=1Zαi, C×)

acts on g as Ad(H).
Let Aut(A) be the group of all permutations ρ of {1, 2, . . . , n} such that aρ(i),ρ(j) = ai,j .

We view Aut(A) as a subgroup of the group Aut(g) by requiring ρ(ei) = eρ(i) and
ρ(fi) = fρ(i). Clearly, the group Aut(A) is contained in Aut1(g), it commutes with the
Chevalley Cartan involution ω. Let Out(A) denote the group {1, ω} × Aut(A), then we have

Aut1(g) = Aut(A) � Ad(G) Aut(g) = Out(A) � Ad(G). (2.3.1)

2.4. The invariant bilinear form

(See [17].) We recall that the generalized Cartan matrix A is supposed indecomposable and
symmetrizable. There exists a nondegenerate ad(g)-invariant symmetric C-bilinear form (., .)

on g, which is entirely determined by its restriction to h, such that

(αǐ, h) = (αǐ, αǐ)

2
〈αi, h〉, i = 1, 2, . . . , n, h ∈ h.

Set di = 2
(αǐ ,αǐ )

and D = diag(d1, d2, . . . , dn), then the matrix DA is symmetric and we may
thus assume that

(αǐ, αǐ) is a positive rational for all i. (2.4.1)

The form (. , .) is clearly Ad(G)-invariant and invariant by the Chevalley Cartan involution
ω (since ω acts by −1 on h). If moreover the generalized Cartan matrix A is non-singular,
then the invariant bilinear form (. , .) satisfying the condition (2.4.1) is unique up to a positive
rational factor. It follows that the form (. , .) is Aut(A)-invariant; indeed, if ρ is a diagram
automorphism, then the invariant bilinear form (ρ(x), ρ(y)) satisfies the condition (2.4.1);
hence, there exists a positive rational λ such that (ρ(x), ρ(y)) = λ(x, y),∀x, y ∈ g; but ρ is
of finite order and we have necessarily λ = 1. Then we deduce from (2.3.1) that the bilinear
form (. , .) is Aut(g)-invariant.

3. Almost split real forms

From now on we suppose that the generalized Cartan matrix A is indecomposable,
symmetrizable and non-singular of indefinite type. The associated Kac–Moody Lie algebra g

is defined as in (2.2).

3.1. Definitions and notation

A real form gR of g corresponds to a semi-involution (or a conjugate-linear involution) σ ′ of
g such that gR is the fixed point real subalgebra gσ ′

. The real form gR is said to be almost
split (resp. almost compact) if the corresponding semi-involution σ ′ is of the first kind (resp.
second kind).

The real subalgebra of g (viewed as a real Lie algebra) generated by ei, fi, i = 1, 2, . . . , n,
is an almost split real form of g; it is called the standard split form and the corresponding
semi-involution of the first kind σ ′

n is called the standard normal semi-involution of g.
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The standard Cartan semi-involution of g is ω′ = σ ′
nω = ωσ ′

n, it is of the second kind
and the corresponding almost compact form is the standard compact form of g. A Cartan
semi-involution of g is a G-conjugate of ω′.

Let gR be a real form of g and σ ′ the corresponding semi-involution of g. If V is a σ ′-stable
C-subspace of g we denote by VR := V σ ′

the fixed point set of σ ′ in V . Conversely, if VR is a
R-subspace of gR we denote by V the σ ′-stable C-subspace VR⊗R C of g. The semi-involution
σ ′ acts on the Kac–Moody group G associated with g and we denote by GR := Gσ ′

the fixed
point subgroup of σ ′.

A Cartan subalgebra of gR is a subalgebra whose complexification is a Cartan subalgebra
of g. A split toral subalgebra of gR is an ad(gR)-diagonalizable subalgebra. Any split toral
subalgebra tR of gR is contained in a Cartan subalgebra hR. If tR is a maximal split toral
subalgebra, then hR is called a maximally split (or maximally noncompact) Cartan subalgebra.

3.2. The index of an almost split real form

A Borel–Tits theory of almost split K-forms of Kac–Moody Lie algebras, where K is an
arbitrary field of characteristic 0, was developed by Rousseau in [30, 31] and [2]. We recall
(and rewrite in the real case) the main results on these forms for the class of Kac–Moody
algebras that we have fixed above.

Proposition 3.2.1. Let gR be a real form of g and σ ′ the corresponding semi-involution. Then
gR is almost split iff σ ′ stabilizes a proper parabolic subalgebra of g. In particular, almost
compact real forms of g are almost R-anisotropic (i.e. there is no σ ′-stable proper parabolic
subalgebra).

If the real form gR is almost split then σ ′ stabilizes a finite-type parabolic subalgebra p

of g.

Theorem 3.2.2. Let gR be an almost split real form of g and ε = + or −, then the group GR

is transitive on pairs
(
tR, pε

R

)
where tR is a maximal split toral subalgebra of gR and pε

R is a
minimal parabolic subalgebra of gR of sign ε and containing tR.

Definition 3.2.3. The rank of gR is the common R-dimension r of its maximal split toral
subalgebras.

Remark 3.2.4. The centralizer lR of tR in gR is the Levi subalgebra of pε
R, its derived algebra

l′R is a compact real semi-simple Lie algebra.
The maximal split toral subalgebra tR is contained in a unique (up to a conjugation by

ZGR
(tR)) maximally split Cartan subalgebra hR of gR. In particular, the maximally split Cartan

subalgebras of gR are GR-conjugate.
Take a G-conjugate of σ ′, we may assume that h (= hR ⊗ C) is the standard Cartan

subalgebra of g and pε = pε(X) is a finite-type standard parabolic subalgebra of sign ε.
Therefore, the two opposite parabolic subalgebras p+(X) and p−(X) are σ ′-stable and we have

t ⊂ h ⊂ b+ ⊂ p+(X). (3.2.1)

Thus, the pair (h, b+) (resp. (tR, p+
R(X))) is called a standardization of g (resp. gR) and we say

that the standardization (h, b+) is compatible with (tR, p+
R(X)).

Definition 3.2.5 (the *-action of σ ′). Actually, the derived Levi subalgebra l′ is that of p+(X),
it is the subalgebra gX generated by gα, α ∈ �X. Note that σ ′(b+), as b+, is a positive Borel
subalgebra satisfying the condition (3.2.1); hence there exists wX ∈ WX (the Weyl group of
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�(h, l) viewed as a subgroup of W ) such that wXσ ′(b+) = b+ and thus wXσ ′ induces on �

an involutive (or a trivial) diagram automorphism σ ′∗ called the *-action of σ ′.
If X = ∅ (i.e. σ ′ stabilizes the standard Borel subalgebra b+) then the real form gR is

called split or quasi-split according to whether the *-action σ ′∗ is trivial or not.

One knows ([2]; proposition 2.7) that t is the subspace of h defined by the following
equations:

α(h) = 0 ∀α ∈ X and α(h) = β(h) if α, β ∈ � satisfy β = σ ′∗(α) (3.2.2)

The restriction of σ ′ to the derived Levi subalgebra l′ is compact and we may assume that σ ′

coincides with the standard Cartan semi-involution ω′ on l′. In particular, σ ′ commutes with
wX on h and so w2

X = 1W is the unity of W .

Definition 3.2.6 (the index of gR). The Satake–Tits index of gR is the data consisting of the
Dynkin diagram of g, the *-action of σ ′ on it and X = type (p+(X)).

Schematically, the Satake–Tits index is the so-called Satake–Tits diagram on which the
roots of X are denoted by white circles ◦ and those of �\X are denoted by black circles •.

If σ ′∗(αi) = αj then it will be indicated by (or ) or by (or ) depending

on whether these two roots are both in X or in �\X and on their positions on the Dynkin
diagram.

Let us note that the colouring of the vertices is chosen here so that the Satake–Tits diagram
for the split form is the Dynkin diagram of its complexified algebra (with black vertices); it
differs from that of Helgason ([15], chapter X) where the roots of X are black and those of
�\X are white.

As the derived Levi subalgebra l′ has a unique compact form (up to a conjugation) we
have as in the classical case [37, 34].

Theorem 3.2.7 ([2], Théorème 2.8). The knowledge of the Satake–Tits index determines the
real form gR up to an R-isomorphism.

3.3. The classification problem and the admissible indices

In practice, the problem is to tell whether such an index comes from an almost split real form of
g or not. An index coming from a real form will be called admissible. To recognize admissible
indices one established in [2] a one-to-one correspondence between conjugacy classes (under
Ad(G) or Aut(g)) of almost split real forms and those of involutions of the second kind of g.

The semi-involution σ ′ and the standard Cartan semi-involution ω′ are assumed to stabilize
the same Cartan subalgebra h (which is maximally split for σ ′). Using an argument going
back to Elie Cartan, one proved that there exists a unique (up to Hσ ′

-conjugation) Cartan
semi-involution which stabilizes h and commutes with σ ′ (see [19] or [28]). By conjugating
by H, one may assume that σ ′ commutes with ω′. Then σ := σ ′ω′ is a C-linear involution
of the second kind of g. Hence, t = h−σ is a maximal σ -split toral subalgebra of g and the
minimal σ ′-stable parabolic subalgebra p+(X) is σ -split, within the meaning of Kac and Wang
[20], and it is minimal for this property. In particular, the standardization (h, b+) is a split pair
for σ and thus the restriction of σ to l′ (= gX) is trivial, cf ([20], section 5) or ([2], section 4).

The main result of Kac and Wang on involutions of the second kind is that split pairs for
σ are Gσ -conjugate ([20], 5.32). Consequently, we have the following result:
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Theorem 3.3.1 ([2], Théorème 4.4). Consider

(1) the semi-involutions of the first kind σ ′ of g,

(2) the involutions of the second kind σ of g,

(3) the relation σ ′ ∼ σ iff

(a) σ ′σ = σσ ′ is a Cartan semi-involution,

(b) σ ′ and σ stabilize a same Cartan subalgebra a,

(c) a is contained in a minimal σ ′-stable parabolic subalgebra p of g.

Then this relation induces a one-to-one correspondence between conjugacy classes under
Ad(G) (resp. Aut(g)) of semi-involutions of the first kind and those of involutions of the second
kind of g.

Remark 3.3.2. The condition (c) in the theorem is equivalent to require that aσ ′
is a maximally

split Cartan subalgebra of gσ ′
.

The involution of the second kind σ acts as the Cartan semi-involution σσ ′ on the real form
gR corresponding to σ ′, it is called the Cartan involution of gR, and we have the corresponding
Cartan decomposition:

gR = k ⊕ p.

In ([9], proposition 2.3), we proved that the Cartan involutions of gR (or, equivalently, the
Cartan semi-involutions of g commuting to σ ′) are GR-conjugate.

Note that the statement of the theorem above does not hold for the semi-involutions of
the second kind and the involutions of the first kind, contrarily to what was mentioned in
[4] and reproduced in [39]. However, in [7] (corollaire 7.7) we proved a result, in the affine
case, which relates the conjugate classes of semi-involutions of the second kind to those of the
involutions of the first kind.

3.4. Involutions of the second kind

Let σ be an involution of the second kind of g. We may assume that (h, b+) is a split pair, so
there exists X ⊂ � of finite type such that σ(�+) ∩ �+ = �+

X and thus p+(X) is a minimal
σ -split parabolic subalgebra. Then σ can be written in this way (see [20], (4.39)):

σ = τωAd(nX)Ad(s)

where

(i) τ is an involutive diagram automorphism stabilizing X and ω is the standard Cartan
involution.

(ii) nX ∈ Nτ ∩ Nω ∩ GX such that its image in WX is the longest element w0(X), where GX

is the subgroup of G generated by Uα, α ∈ �X, and WX the subgroup of W generated by
ri, i ∈ X.

(iii) s ∈ Hσ .

To determine Ad(s), one needs to know the restriction of Ad(nX) on gX and the action of
Ad(nX)2 on g. From the condition σ |gX = 1, one gets that w0(X) acts on hX(:= h ∩ gX) as
(−τ) (i.e. τ |hX = −w0(X)).
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Table 1. The longest element w0 and the sum of positive coroots 2ρˇ for simple Lie algebras.

3.5. How to choose nX?

By using the results of Tits on the word problem [38] or [2] one gives in [2] an explicit formula
of nX and then one shows that the restriction of Ad(nX) on gX is equal to that of τω (see [2],
(4.9)). More precisely, for any reduced expression (ri1ri2 · · · rik ) of the longest element w0(X)

of WX, the element nX := (mi1mi2 · · ·mik ) ∈ Nτ ∩Nω ∩GX does not depend on the choice of
the reduced expression of w0(X) and the automorphism Ad(nX) coincides with the traditional
prolongation of w0(X) in an automorphism of g of order dividing 4 (see [2], (4.7) and (4.8)).
Thus, it is shown that

Ad(nX)2 = w0(X)2 = exp(iπad(2ρX̌))

where 2ρX̌ is the sum of the positive coroots of �X (see [2], (4.10.3)).
In table 1 we give, for each complex simple Lie algebra, a reduced expression of the

longest element w0 of the corresponding Weyl group, by noting that in the case An, n � 1, we
have

w0(X) = (r1r2 · · · rn).(r1 · · · rn−1) · · · (r1r2).r1

and that in all the other cases the Coxeter number h is even, and thus w0(X) = (c)
h
2 , where c

is a selected Coxeter transformation such that (c)
h
2 transforms the fundamental chamber into

its opposite (cf [12], chapter V, section 6, proposition 2). In the same table, we also give the
expression with αǐ (extracted from the ‘Planches de Bourbaki’ [12]) of the sum of the positive
coroots 2ρ .̌ In our situation, we choose for nX the product of the elements corresponding
to the connected components of X, and those are the products obtained from table 1 if one
replaces ri by mi = exp(ei) exp(−fi) exp(ei).
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3.6. What is Ad(s) then?

Using the fact that σ |gX = 1, one can write (see the proof of (4.10.4) in [2]) Ad(s) =
exp

(
iπad

(∑
j∈� εj (pj −pτ(j))

))
, where � is a complete set of representatives of the τ -orbits

in �\X and εj ∈ Q (j ∈ �) such that

2ρX̌ +
∑
j∈�

2εj (pj − pτ(j)) ∈ 2ZP = ⊕
i∈I

2Zpi (3.6.1)

here I denotes the index set {1, 2, . . . , n} and for any subset X of � we confuse sometimes X
with the subset IX := {i ∈ I ; αi ∈ X} of I. Let j ∈ � and u ∈ Z, then by conjugating σ

by exp
(

iπ
2 ad(u(pj + pτ(j)))

) ∈ ZHω′ (gX) one can replace εj by εj + u without thus modifying
the others εi , then ∀j ∈ �, the element εj ∈ 1

2 Z may be modified modulo Z. From
(3.6.1) one sees that the class of 2ρX̌ in ZP/2ZP has a representative in (ZP�\X)(−τ), where
P�\X = {pi;αi /∈ X}. And by the preceding result, for any such representative 2ρ̄X, one may
modify εj in order that

2ρ̄X =
∑
j∈�

2εj (pj − pτ(j)).

Hence, we have the following results.

Proposition 3.6.1. Conjugating by ZHω′ (gX), we may assume Ad(s) = exp
(

iπ
2 ad(2ρ̄X)

)
and

this yields

σ = τωAd(nX) exp
( iπ

2
ad(2ρ̄X)

)
. (3.6.2)

Remark 3.6.2. Any involution of the second kind σ taking the form (3.6.2) and the associated
semi-involution of the first kind σ ′ := σω′ = τσ ′

nAd(nX) exp
(

iπ
2 ad(2ρ̄X)

)
are called standard.

Any involution (resp. semi-involution) of the second (resp. the first) kind is G-conjugate to a
standard one. Some involutions of the second kind (which are not all standard) are considered
in [26] by Pati, Parashar and Kaushal to give the corresponding Iwasawa decomposition for
some hyperbolic Kac–Moody Lie algebras.

Let σ ′ be a standard semi-involution of the first kind and gR the corresponding almost
split real form. Then, the involutive diagram automorphism τ induces the *-action of σ ′ and
thus the Satake–Tits index of gR is entirely determined by the data (τ,X). Summarizing, we
get the following result.

Theorem 3.6.3. Let X ⊂ � be of finite type and τ an involutive diagram automorphism
stabilizing X. Then, the couple (τ,X) corresponds to an admissible index iff τ |hX = −w0(X)

and the class of 2ρX̌ modulo 2ZP has a (−τ)-fixed representative in ZP�\X. In particular, if
τ is trivial (on �\X), then Ad(nX) should be an involution, i.e. 2ρX̌ has to be in 2ZP .

4. The relative root system

Let σ ′ be a semi-involution of the first kind and gR the corresponding almost split real form. We
may assume that σ ′ is standard (see (3.6.2)) and thus σ = σ ′ω′ = ω′σ ′ is the Cartan involution
of gR. Hence, hR is a σ -stable maximally split Cartan subalgebra of gR and aR := h

−σ
R is

a σ -stable maximal split toral subalgebra. The group K := Gσ
R is transitive on the set of
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σ -stable maximally split Cartan subalgebras (resp. σ -stable maximal split toral subalgebras)
of gR (cf [9], proposition 2.6).

Warning. Note that aR is a maximal Abelian subspace of p := g
−σ
R (i.e. a Cartan subspace)

but, in contrast to the classical case of real semi-simple Lie algebras, an element of p is not
necessarily adgR

-diagonalizable; moreover, a maximal Abelian subspace of p may be infinite
dimensional, hence maximal Abelian subspaces of p are not K-conjugate.

For α ∈ �(g, h) we denote by α′ := α|aR the restriction of α to aR. The (infinite) relative
(or restricted) root system �′ := �(gR, aR) = {α′;α ∈ �(g, h)}\{0} is more surprising, it
was studied by Bardy in ([2], section 3) (see also [3], section 6). In our situation, we have
explicitly

aR = ⊕
i∈�

R(pi + pτi)

where � is, as in section 3.6, a complete set of representatives of the τ -orbits in I\IX. It follows
that the rank of gR is r = |�|. Clearly α′

i = 0 iff i ∈ IX, and for j, k ∈ I\IX, �′ � α′
j = α′

k

iff j and k are in the same τ -orbit. In particular, the set �′ := {α′
i ; i ∈ �} is a root basis of

�′. Denote by �′
+ (resp. �′

−) the set of positive (resp. negative) roots of �′ with respect to the
basis �′; then �′ = �′

+ ∪ �′
− (disjoint union) and σ(�′

+) = ω′(�′
+) = �′

−. For α′ ∈ �′, the
root space gR,α′ associated with α′, with respect to adjoint action of aR, is finite dimensional.

4.1. The Iwasawa decomposition

Let lR be the centralizer of aR in gR and n′
± = ⊕

α′∈�′±
gR,α′ , then we have gR = n′

− ⊕ lR ⊕ n′
+.

Note that lR = aR ⊕ (k ∩ lR) and σ(n′
−) = n′

+. It follows that n′
− ⊂ k ⊕ n′

+. Hence, one can
deduce the Iwasawa decomposition for the almost split real Kac–Moody algebra gR:

gR = k ⊕ aR ⊕ n′
±.

Consider the positive (or negative) parabolic subgroup P ± = P ±(X) of the complex Kac–
Moody group G associated with the minimal σ ′-stable parabolic subalgebra p±(X). The
subgroup P ± is the normalizer of p±(X) in G; it is stable by σ ′ and is generated by the
subgroups H and Uα (α ∈ �re

± ∪ �X). Let L be the subgroup of P ± generated by H
and Uα (α ∈ �X), and UX

± the normal subgroup of P generated by Uα (α ∈ �re
±\�X).

Note that the subgroups P,L and UX
± are σ ′-stable and P ± = L � UX

± . Denote by
P ±

R = (P ±)σ
′
, N±

R := (UX
± )σ

′
, LR = Lσ ′

,MR = LR ∩ Lω′ = LR ∩ K and A ‘the vector
part’ of HR := Hσ ′

. Some computations in the complex algebraic reductive group L (see,
for example, [21]) show that the following unique decomposition holds for the minimal real
parabolic subgroup P ±

R :

P ±
R = LR � N±

R = MRAN±
R (Langlands decomposition).

Theorem 4.1.1. The following unique decomposition holds for the almost split real Kac–
Moody group GR:

GR = KAN±
R (Iwasawa decomposition).

Proof. From the Iwasawa decomposition of the complex Kac–Moody group G (cf [18] or
[19]), one can deduce the following decomposition:

G = Gω′
P + = Gω′

LUX
+ , (4.1.1)

which is conserved by the semi-involution σ ′. Moreover, using the fact that (P +)ω
′ = Lω′

,
one can see that the component of an element g ∈ G with respect to UX

+ in (4.1.1) is unique.
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It follows that GR = (Gω′
L)σ

′
N+

R. Let g = ul ∈ (Gω′
L)σ

′
, then g(aR) = u(aR) is a maximal

split toral subalgebra of gR which is stable by ω′ (and therefore by σ ). Since the maximal split
σ -stable toral subalgebras of gR are K-conjugate (cf [9]; proposition 2.6) one can modify g by
K (by composing on the left) so that g stabilizes aR. By composing again by the relative Weyl
group (see section 4.2) which has representatives in the group K (cf [9]; proposition 2.18) we
may assume that g fixes aR, i.e. g ∈ LR = MRA. The same decomposition holds with N−

R

since σ
(
N+

R

) = N−
R and σ stabilizes GR,K and A. The uniqueness of the decomposition is

clear. �

N.B. Note that the argument used in the proof of theorem 4.1.1 is in fact available
for general symmetrizable Kac–Moody Lie algebras and groups and thus the Iwasawa
decomposition holds for the almost split real algebra gR and the corresponding group GR

in the general case.

4.2. The relative Weyl group

The new aspect to note here is that, as in Borcherd’s work [11], a relative simple root α′
i of

the basis �′ may be imaginary (in the sense that no reflection corresponds to this root) and
that is the case iff the subset X(i) := X ∪ {αi, ατi} of � is not of finite type; then all positive
integer multiples of α′

i are still roots. In the case where X(i) is of finite type, the relative
root α′

i is called a real relative simple root. If α′
i is real, then the (commutative) product of

the longest elements of the Weyl groups corresponding to the connected components of X(i)

meeting the τ -orbit of i, commutes with σ ′ and σ and induces on aR a reflection R′
i such that

R′
i (a) = a − 〈α′

i , a〉α′
ǐ (a ∈ aR) for some α′

ǐ ∈ aR named the coroot of α′
i and satisfying

〈α′
i , α

′
ǐ 〉 = 2. Actually, α′

ǐ is the only element of a (defined by equations (3.2.2)) satisfying
〈α′

i , α
′
ǐ 〉 = 2 and which is a linear combination of αǰ , where j runs over the union of the

connected components of X(i) meeting the τ -orbit of i.
The relative Weyl group W ′ is generated by the reflections R′

i such that α′
i is a real simple

relative root. It is isomorphic to N ′/H ′, where N ′ (resp. H ′) is the normalizer (resp. the
centralizer) of aR in GR, and it is simply transitive on the set of minimal parabolic subalgebras
of gR of sign ε and containing aR.

If α′
i is a real simple relative root, then �′

+ ∩Z+α′
i ⊂ {α′

i , 2α′
i} and 2α′

i is a root iff τ(i) �= i

are contained in the same connected component of X(i) or τ(i) = i and �X(i) has a root with
coefficient 2 on αi .

Remark 4.2.1. If X = ∅ and τ �= 1, then gR is quasi-split and tR := hτ
R = ∑

i∈I R(pi + pτi)

is a maximal split toral subalgebra. In order to avoid any confusion, one denotes by Ȳ (instead
of Y ′) the objects relating to the quasi-split form similar to those introduced above, in the
general case, for almost split real forms. In particular, the relative root system �̄ is �(g, hτ )

and the corresponding relative Weyl group W̄ is generated by R̄i such that the τ -orbit ī of i is
of finite type. If J ⊂ I is of finite type and τ -stable, we denote by J̄ := J/(τ) and W̄J̄ the
subgroup of W̄ generated by R̄j , j ∈ J̄ . For i ∈ Ī , set ᾱî := ∑

j∈i αǰ ∈ tR; then ᾱi is real iff
〈ᾱi , ᾱî 〉 = 〈αi, ᾱiˆ〉 is positive (=1 or 2).

Return now to the general case and put α′
iˆ = α′

ǐ (resp. 1
2α′

ǐ) if α′
i is a real simple relative

root such that 2α′
i /∈ �′ (resp. 2α′

i ∈ �′) and α′
iˆ = ∑

w̄∈W̄X̄
w̄(ᾱiˆ) if α′

i is an imaginary
simple relative root. Clearly α′

iˆ ∈ aR in the two cases. If α′
i is a real simple relative root then

α′
ǐ = p̄i −R′

i (p̄i), where p̄i ∈ R(pi +pτi) ⊂ aR such that 〈α′
i , p̄i〉 = 1 and R′

i is the reflection
corresponding to α′

i . Thus, the expression of α′
iˆ results easily from that of α′

ǐ in this case.
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A relative simple root α′
i is imaginary if and only if 〈α′

i , α
′
iˆ〉 � 0. Here now are some

indications to calculate α′
iˆ when α′

i is an imaginary simple relative root and the relative rank
r � 2 (we do not calculate α′

iˆ when r = 1). We will assume that α′
i is imaginary of affine type

(i.e. X(i) is of affine type) and so 〈α′
i , α

′
iˆ〉 = 0. Note that this assumption is always checked

for the hyperbolic Kac–Moody Lie algebras. If the diagram automorphism τ (defining the
*-action of σ ′) is non-trivial, then by considering the subset X̄(ī) in �̄ (which is also of affine
type) one can reduce the problem to the case τ = 1. Assume now that τ = 1 and let KX(i) be
the canonical central element of the affine Lie algebra gX(i), generated by {eα, fα, α ∈ X(i)}
(see [17]; chapter 6). Then one can write KX(i) = ∑

α∈X(i) aαα ,̌ with positive integers aα

(α ∈ X(i)). In particular, we have αǐ = 1
aαi

(
KX(i) − ∑

α∈X aααˇ
)
. One can see easily that∑

w∈WX
w(αˇ) = 0 for α ∈ X, and since the canonical central element KX(i) is fixed by WX

(viewed as a subgroup of the affine Weyl group WX(i)) we get

α′
î = |WX|

aαi

KX(i).

4.3. The relative Kac–Moody matrix

In ([2], section 3), Bardy associated with the relative root system �′ a relative Kac–Moody
matrix B ′ := (〈α′

j , α
′
iˆ〉) = (b′

i,j ) which satisfies
b′

i,j ∈ Z,
b′

i,i � 2,
b′

i,j ∈ Z− for i �= j ,
b′

i,j = 0 iff b′
j,i = 0.

Theorem 4.3.1 ([2; Théorème 3.10]). The relative root system is the only subset �′ of
⊕i∈I ′ Zα′

i , where I ′ = (I\IX)/(τ ) � �, such that

(1) �′ = �′
+ ∪ �′

− where −�′
− = �′

+ = �′ ∩ (⊕i∈I ′ Z+α′
i ).

(2) Z+α′
i ∩ �′

+ =




{α′
i} if b′

i,i = 2

{α′
i , 2α′

i} if b′
i,i = 1

N∗α′
i if b′

i,i � 0.

(3) For all α′ ∈ �′
+\�′, there exists i ∈ I ′ such that α′ − α′

i ∈ �′
+.

(4) For all i ∈ I ′ and α′ ∈ �′
+\Nα′

i , the root subset �′ ∩ (α′ + Zα′
i ) is equal to

(i) the string {α′ − pα′
i , . . . , α

′ + qα′
i} with p, q ∈ N such that p − q = (

2
b′

i,i

)〈α′, α′
iˆ〉 if

b′
i,i > 0,

(ii) {α′} if b′
i,i � 0 and supp(α′) and {α′

i} are not linked (with respect to B ′),
(iii) a set containing α′ + Nα′

i if b′
i,i � 0 and supp(α′) and {α′

i} are linked.

Remark 4.3.2. Actually when α′
i is an imaginary relative simple root (i.e. b′

i,i � 0), the
relative root system �′ does not depend on the 〈α′

j , α
′
iˆ〉 = b′

i,j (j ∈ I ′) but only on the fact
they are zero or not.

4.4. The relative Dynkin diagram

The normalized relative Kac–Moody matrix associated with B ′ is the matrix A′ = (a′
i,j ) such

that a′
i,j = 2(b′

i,i )
−1b′

i,j = 〈α′
j , α

′
ǐ 〉 if b′

i,i > 0 and a′
i,j = b′

i,j otherwise (see [3]; section 2).
To the relative Kac–Moody matrix is associated a graph S(B ′), with |I ′| vertices, called the
relative Dynkin diagram as follows: we associate with each i a vertex equipped with a cross
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Table 2. List of strictly hyperbolic symmetrizable Dynkin diagrams.

if b′
i,i = 1, with a sign − if b′

i,i < 0 and with 0 if b′
i,i = 0. Two vertices i and j are linked iff

b′
i,j < 0; more precisely, if b′

i,i and b′
j,j are positive and a′

i,j a
′
j,i = ni,j � 4, the vertices i and

j are joined by mi,j [:= max(|a′
i,j |, |a′

j,i |)] line(s) with an arrow pointing towards the vertex i
if |a′

i,j | > 1. If ni,j � 5 or one of the two coefficients b′
i,i or b′

j,j is non-positive, the vertices i
and j are joined by a thick line on which we write |a′

i,j | (beside the vertex i) and |a′
j,i | (beside

the vertex j ).
Concerning the nomenclature, the name Z− stands for •−. The relative Kac–Moody

matrix
(

a −s
−t b

)
, with a � b and s � t if a = b, is named H

a,b
(s ′,t ′), where s ′ = 2s (resp. t ′ = 2t)

if a = 1 (resp. b = 1) and s ′ = s (resp. t ′ = t) otherwise. Actually, for the numbers a, b,
the number 2 is omitted, 1 is replaced by × and (for the Dynkin diagram) a strictly negative
number is replaced by −. Some other names are given directly in the tables, they are inspired
by the notation in tables 2 and 3(a)–(c).

5. Classification

Since the list of hyperbolic Kac–Moody Lie algebras seems to be very long (at least 136) we
shall here restrict ourselves to the subclass of the strictly hyperbolic Kac–Moody Lie algebras
and the (canonical) hyperbolic Lorentzian extensions of affine Lie algebras (see definition
below) to classify their almost split real forms. The classification in the affine case was done
in [2].

In table 2 we give, with their names, the list of all strictly hyperbolic symmetrizable
Dynkin diagrams. The nomenclature is inspired from the book of Kac ([17], exercise 4.3). It
is noted that the strictly hyperbolic Dynkin diagram G′G3 is missed in [33].
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Table 3. Hyperbolic Lorentzian extensions of affines Lie algebras.

(a)

(b)
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Table 3. (Continued)

(c)

Table 4. List of almost split real forms of strictly hyperbolic symmetrizable Kac–Moody algebras.

5.1. Hyperbolic Lorentzian extensions of affine Lie algebras

Consider the Dynkin diagram of an affine Lie algebra of type X(k)
n with the vertices

α0, α1, . . . , αnk
. One extends the Dynkin diagram of X(k)

n by adding a root α−1 which
is linked only to the root α0 (i.e. 〈α−1, α0̌〉 and 〈α0, α−̌1〉 are negative integers, and
〈α−1, αǐ〉 = 0 ∀i = 1, 2, . . . , nk). Let A be the generalized Cartan matrix corresponding
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Table 4. (Continued.)
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Table 4. (Continued.)
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Table 4. (Continued.)

to this extended Dynkin diagram, Ā the Cartan matrix corresponding to the finite-type
Dynkin diagram with the vertices α1, α2, . . . , αnk

. We denote by m the positive integer
〈α−1, α0̌〉 × 〈α0, α−̌1〉, then we have

Proposition 5.1.1. The generalized Cartan matrix A is symmetrizable, non-singular and
Lorentzian (i.e. the signature of the corresponding symmetrized matrix is (+ + · · · + −)) and
det(A) = −m × det(Ā) < 0.

Proof. The generalized Cartan matrix A is clearly symmetrizable. Let g be the corresponding
symmetrizable Kac–Moody Lie algebra over the real field R, h := Rα−̌1 ⊕ Rα0̌ ⊕ · · ·⊕ Rαňk

the standard Cartan subalgebra and (. , .) the invariant bilinear form on g (see (2.4)). We have
to show that the symmetric bilinear form (. , .) has signature (+ + · · · + −) on h. Let K be the
canonical central element of the affine Lie algebra of type X(k)

n above (viewed as a subalgebra
of g). Then one can see easily that

h = (Rα−̌1 ⊕ RK)
⊥⊕ (Rα1̌ ⊕ · · · ⊕ Rαňk

)

where the orthogonal direct sum is taken relatively to the symmetric bilinear form (. , .) on
h. As the Dynkin diagram corresponding to the vertices α1, α2, . . . , αnk

is of finite type, the
symmetric bilinear form (. , .) is positive definite on (Rα1̌ ⊕ · · · ⊕ Rαňk

). Since (K,K) = 0
and (α−̌1,K) = (α−̌1, α0̌) < 0, the matrix of the bilinear form (. , .) on (Rα−̌1 ⊕ RK), with

respect to the basis (α−̌1,K), takes the form
(

a −b
−b 0

)
where a and b are two positive real

numbers. In particular, the bilinear form (. , .) has signature (+ −) on (Rα−̌1 ⊕ RK). Hence,
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Table 5. List of almost split real forms for the canonical hyperbolic Lorentzian extensions of
exceptional affine Kac–Moody algebras.

the symmetric bilinear form (. , .) is nondegenerate on h and has signature (+ + · · · + −). The
last formula for the determinant holds by describing the matrix A using Ā. �

Definition 5.1.2. The Kac–Moody Lie algebra g associated with the extended Dynkin Diagram
above is called a Lorentzian extension of the affine Lie algebra X(k)

n . The positive integer
m (= 〈α−1, α0̌〉 × 〈α0, α−̌1〉) is called the link multiplicity of the Lorentzian extension of X(k)

n .

5.1.1. Remarks and notation

(1) Note that if the Kac–Moody algebra g (Lorentzian extension of the affine Lie algebra
X(k)

n ) is hyperbolic, then the link multiplicity m ∈ {1, 2, 3, 4} since the Dynkin diagram
corresponding to the vertices α−1 and α0 (which will be denoted as D−1,0) should be of
finite or affine type.

(2) The Lorentzian extension of an affine Lie algebra of type X(k)
n for which the two vertices

α−1 and α0 are simply linked (i.e. m = 1) was considered by Henneaux and Julia in [16]
(see also [17]; section 5.11) where they denoted it by X(k)∧

n . They called such a Lorentzian
extension the standard or twisted overextension of Xn depending on whether k = 1 or
k = 2, 3. Here, we shall choose the notation HX(k)

n for the Lorentzian extension X(k)∧
n

when this one is hyperbolic (and m = 1) and it will be called the canonical hyperbolic
Lorentzian extension of X(k)

n .
(3) In the case m = 2 or 3 (i.e. the rank-2 Dynkin diagram D−1,0 is of type C2 or G2) we

will denote by HmX(k)
n (resp. Hm∗X(k)

n ) the Lorentzian extension of X(k)
n if this one is

hyperbolic and the root α−1 is shorter (resp. longer) than α0.
(4) In the case m = 4, the rank-2 Dynkin diagram D−1,0 is of affine type and there are two

possibilities:
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Table 5. (Continued.)
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Table 5. (Continued.)

Table 6. List of almost split real forms for the canonical hyperbolic Lorentzian extensions of
classical affine Kac–Moody algebras.
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Table 6. (Continued.)

(i) The Dynkin diagram D−1,0 is of type A
(1)
1 : the two roots α−1 and α0 have the same

length and we denote by H(1)X(k)
n the Lorentzian extension of X(k)

n if this one is
hyperbolic.
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Table 6. (Continued.)

(ii) The Dynkin diagram D−1,0 is of type A
(2)
2 : we denote by H(2)X(k)

n (resp. H(2)∗X(k)
n )

the Lorentzian extension of X(k)
n if this one is hyperbolic and the root α−1 is shorter

(resp. longer) than α0.
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Table 6. (Continued.)
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Table 6. (Continued.)
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Table 6. (Continued.)
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Table 6. (Continued.)
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Table 6. (Continued.)

(5) Note that for the twisted Dynkin diagram A
(2)
2n there exist two conventions for the root

α0; so we consider the two corresponding canonical hyperbolic Lorentzian extensions
HA

(2)
2n and H ′A(2)

2n , each one is the dual of the other. We adopt the same notation
for the other hyperbolic Lorentzian extensions (with m = 2, 3, 4) : HxA

(2)
2n and

H ′xA(2)
2n , x = 2, 2∗, 3, 3∗, (1), (2), (2)∗.

5.1.2. Canonical hyperbolic Lorentzian extensions of affine Lie algebras. It was stated
in [16] that all Lorentzian extensions (with m = 1) of exceptional affine Lie algebras are
hyperbolic (including HA

(1)
1 ,HA

(2)
2 ,H ′A(2)

2 and HD
(3)
4 ); whereas there are some restrictions

for those of classical affine Lie algebras.
In table 3(a) we give, with their names, the list of all canonical hyperbolic Lorentzian

extensions of classical affine Lie algebras other than HA
(1)
1 ,HA

(2)
2 ,H ′A(2)

2 and HD
(3)
4 which

we had regarded as exceptional. In particular, the four rank-10 hyperbolic Kac–Moody
algebras which are often denoted as E10, BE10, CE10 and DE10 are Lorentzian extensions of
affine algebras and they are denoted here respectively as HE

(1)
8 ,HB

(1)
8 ,HA

(2)

15 and HD
(1)
8 .

Note that table 3(a) contains all the hyperbolic Dynkin diagrams of rank from 7 to 10 (see
[17]; exercise 4.3 or [33]). Finally, let us announce that the two rank-5 hyperbolic Dynkin
diagrams HC

(1)
3 and HD

(2)
4 are missed in [33].
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5.1.3. Hyperbolic Lorentzian extensions of affine Lie algebras with m = 2, 3, 4. The
hyperbolic Lorentzian extensions of affine Lie algebras with m = 2, 3 are given in table 3(b).

The other missed hyperbolic Lorentzian extensions are, if one changes the labelling,
canonical or already enumerated with different names on table 3(b). In particular, we have

The hyperbolic Lorentzian extensions of affine Lie algebras with m = 4 are given in
table 3(c).

5.2. Tables

In the case of the strictly hyperbolic algebras and the canonical Lorentzian extensions
of exceptional affine algebras (including HA

(1)
1 ,HA

(2)
2 ,H ′A(2)

2 and HD
(3)
4 ), we indicate

successively, in tables 4 and 5, the name of the almost split real form, its Satake–Tits diagram
(represented in accordance with (3.2.6)), the conditions on the parameters and the relative root
system (with its name and its Dynkin diagram). The name of the real form arises in this case
in the form aZm

n,r where Zn is the name of the hyperbolic algebra, r = |I ′| is the relative rank,
a = 1, 2 is the order of the diagram automorphism τ defining the *-action of σ ′ (omitted if
it equals 1) and m (omitted if it equals 0, i.e. in the quasi-split case) is the dimension of the
derived Levi subalgebra l′ = gX (cf (3.2.5)).

In the case of the canonical hyperbolic Lorentzian extensions of classical affine algebras,
we indicate successively, in table 6, the name of the almost split real form, its Satake–Tits
diagram (represented in accordance with (3.2.6)), the conditions on the parameters and the
relative root system (with its name and its Dynkin diagram). The name of the real form arises
in this case in the form a

i Zn,r where Zn is the name of the hyperbolic algebra, a and r are
given according to same conventions as above, and i (optional) is a parameter: it is often the
cardinal of the smallest connected component of X.

The determination of all admissible indices is made using (3.6.3). Actually, when the
relative rank is at least 2, this can also be deduced from proposition 2.11 in [2] and the known
lists of admissible indices for simple or affine Lie algebras (see [37] or [35] and [2]). It is easy
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to determine relative Dynkin diagram using the rules explained in section 3 to compute α′
ǐ or

α′
î ; the results already known for semi-simple or affine Lie algebras may also be used. We do

not calculate a′
i,i in rank 1 (i.e. when b′

i,i < 0).
Finally, let us note (as it can be shown in the tables above) that for the strictly hyperbolic

almost split real forms, of rank �2, the corresponding relative Dynkin diagrams are also strictly
hyperbolic; whereas, for the hyperbolic canonical Lorentzian extensions of affine algebras,
the relative Dynkin diagrams, associated with their almost split real forms of rank �3, are
hyperbolic but they are not always Lorentzian extensions of affine diagrams.
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